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1. Introduction 

The Army’s tactical radio networks carry critical data to command, control, 
communications, and computers (C4) applications that deliver situational 
awareness and other essential information to Warfighters. These networks operate 
in challenged environments, without local infrastructure, and are often highly 
constrained by size, weight, and power limitations. The applications that use these 
networks must be able to handle lower bandwidths, higher packet drop rates, and a 
lower overall quality of service compared with their enterprise counterparts. The 
communication protocols that carry application traffic are typically designed for 
higher quality network layers and therefore must be monitored and tuned to achieve 
optimal performance and reliability. It is essential to evaluate the effectiveness of 
the overall communications capability as new applications, network devices, and 
protocols are developed and deployed. 

The US Army Test and Evaluation Command conducts large-scale test events, such 
as the Network Integration Evaluation, multiple times per year where tactical radio 
networks are configured and deployed on experimental missions. Instrumentation 
on network nodes continually collects test data, which includes packet capture, 
device status via Simple Network Management Protocol,1 GPS position data, and 
precise timing information. Data from this instrumentation are harvested and 
gathered to conduct reduction and analysis of various performance metrics. An 
important distinction of this test versus a typical enterprise network performance 
test is that data are collected from a select subset of all network nodes, and the 
aggregate of all collected information is necessary to produce the required analysis. 
Since dropped packets, packet latency, and jitter are important factors in the 
performance of the network applications, it is critical to have accurately time-
stamped packet observations at all network nodes using a global time 
synchronization source.2 Test events generate large amounts of data that standard 
computing platforms (e.g., high-end servers) cannot process fast enough to support 
the limited time frame for analysts to produce reports. The need for high-
performance computing (HPC) to solve this problem has been well established and 
documented in a US Army Research Laboratory report on data marshalling.3 

2. Motivation and Desired Data Products 

A large class of network applications (e.g., email, web) requires “reliable” transport 
of data across a network. Reliability is defined as guaranteed and ordered delivery 
of data from application to application. Internet Protocol (IP) does not guarantee 
either of these capabilities, especially in a challenged tactical radio network 
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environment. Use of the Transmission Control Protocol (TCP) transport protocol is 
the standard method of providing reliability to networked applications. Network 
applications that do not require these reliability services typically use User 
Datagram Protocol (UDP) for transport. UDP is handled by the capability presented 
in this report, but due to its simplicity in this scope, the focus is on TCP. 

TCP uses acknowledgment messages, sequence numbering of data bytes, and data 
caching to achieve reliability and ordering. If IP packets are dropped, a TCP 
implementation will resend application data that it has cached without any action 
on the part of the application code. This caching consumes valuable memory 
resources on both the transmitting and receiving network nodes and must be 
carefully optimized based on the performance of the IP layer. Using memory and 
available bandwidth efficiently is the key factor in TCP’s performance. TCP 
performs best in an environment with a low round-trip time and a low drop rate.4 
Neither of these is typical in a tactical radio environment. 

To evaluate the efficiency of C4 applications that require reliable transport services, 
careful examination of TCP protocol performance is necessary. Data collected 
during test events includes IP packet observations, which are correlated and 
matched prior to TCP analysis. The CommsIP table5 is generated from raw data 
and contains a summary of all IP packets that traverse the tactical network including 
their sending and receiving times at specific observation points. This table is critical 
to TCP analysis and its summary format serves to reduce the amount of data read 
in for analysis instead of reading and parsing entire packets. There are 2 types of 
data products generated for TCP analysis: a CommsTcpSession table and a 
CommsTcpFlow table. The layout and definitions in these tables were designed by 
the Test and Evaluation community.6 

3. TCP Sessions 

The CommsTcpSession table (Table 1) presents the TCP session as it is observed 
at a single point on the network. Therefore, a single TCP session will be represented 
in this table for each observation point along the path between end points. While 
there are typically 2 observation points (one at the “initiator” side and one at the 
“peer” side), there are instances where packets transit one or more intermediate 
observation points, thus resulting in one or 2 extra TCP session table entries per 
additional observation point. The information collected in the CommsTcpSession 
table identifies the endpoints of the session (IP address and TCP port number of 
initiator and peer) and byte counts of the data transferred between endpoints. 
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Table 1 CommsTcpSession table columns 

Column Name Description 
cts_id Integer index of row 
cts_deid Device (instrument) Identifier where observation took place 
cts_collpt Collection point or logical observation point on the network 

Mac8 Medium Access Control (Mac) (Ethernet) address observed as 
destination for outgoing packets 

subsessionid8 Zero-based index of session identifier if endpoints are re-used at a later 
time  

cts_iip IP Address of TCP session initiator 
cts_iport TCP port number of TCP session initiator 
cts_iinitseqnum Initial sequence number of TCP session initiator 
cts_pip IP Address of the TCP session “peer” (listener, or server) 
cts_pport TCP port of TCP session peer 
cts_pinitseqnum Initial sequence number of TCP session peer 
cts_dscp Differentiated Services Code Point from IPv4 Type-of-Service field 

cts_establishedstate 

Enumeration of the state of session establishment (e.g., only initial 
synchronize (SYN) observed, only SYN and synchronize and 
acknowledge (SYN-ACK) observed, full 3-way handshake observed, 
session observed in already open state) 

cts_establishtime Time to complete 3-way handshake 

cts_endstate Enumeration of  session end state (e.g. FIN or RST flags seen from 
initiator and/or peer) 

cts_sessionstarttime Absolute time of first packet observed for this session 
cts_sessionendtime Absolute time of last packet observed for this session 

cts_appbytesitop Total number of application bytes sent (TCP payload data) from initiator 
to peer. This does not include retransmissions. 

cts_appbytesptoi Total number of application bytes sent (TCP payload data) from peer to 
initiator. This does not include retransmissions. 

cts_actualbytesitop Total number of application bytes sent (TCP payload data) from initiator 
to peer. This includes application data sent in retransmissions. 

cts_actualbytes_ptoi Total number of application bytes sent (TCP payload data) from peer to 
initiator. This includes application data sent in retransmissions. 

cts_totalbytesitop Total number of IP payload bytes from initiator to peer. This includes 
TCP headers and options from all packets including retransmissions. 

cts_totalbytesptoi Total number of IP payload bytes from peer to initiator. This includes 
TCP headers and options from all packets including retransmissions. 

cts_outeripsrc 
If packet is tunneled (e.g. GRE), this is the source IP address in the outer 
IP packet header. It is determined once per session and represents the 
first observation of a tunneled packet. 

cts_outeripdst 
If packet is tunneled, this is the destination IP address in the outer IP 
packet header. It is determined once per session and represents the first 
observation of a tunneled packet. 

cts_qalimiteduseid 
For quality assurance purposes, this entry may not be suitable for all 
types of analysis. Possibly due to known instrumentation malfunctions 
during this session or other network issues. 

cts_qareasoncode A code specifying the reason for any limited use of this entry. Only valid 
if LimitedUse field is set. 

cts_daglimiteduseid Reserved for DAG (Data Authentication Group) use 
cts_dagreasoncode Reserved for DAG use 
numpktsinit8 Number of IP packets sent from TCP Initiator address for this session. 
numpktsdst8 Number of IP packets sent from TCP Peer address for this session. 
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There are 3 different types of byte counts in the table per session. AppBytes 
represents the amount of application layer data sent or received by the application, 
which is the byte count of the payload from the TCP packet. This does not include 
any TCP headers or payload data that was retransmitted due to packet drops. 
ActualBytes is the actual count of TCP payload bytes including re-transmissions. 
The ratio of AppBytes and ActualBytes gives a measure of efficiency with respect 
to dropped packets on the network. The third byte count adds in all the overhead of 
the TCP protocol itself, counting all the bytes of the TCP header, TCP options, and 
retransmissions. It is effectively the byte count of the IP payloads for the TCP 
session. Each of these byte counts are recorded for each direction: Initiator-to-Peer 
and Peer-to-Initiator. 

4. TCP Flows 

The CommsTcpFlow table (Table 2) focuses on Speed of Service (SoS), or latency, 
of application data from sender to receiver. This table lists the latency for each 
segment of a TCP session recorded in the CommsTcpSession table. Entries in the 
CommsTcpFlow table reference CommsTcpSession table records by their unique 
identifiers. Each entry in the table includes a starting index and length (in bytes) 
within the overall sequence number space of the session and the total time it took 
for that segment to get from one observation point to the next. If a packet is dropped 
in transit, this time should represent the time the data bytes were eventually 
received (receipt of retransmission) minus the time it was first transmitted. The 
number of application bytes represented by each row is arbitrary and depends solely 
on how many bytes have the same SoS. 

Table 2 CommsTcpFlows table columns 

Column 
Name Description 

ctf_id Index into table 
ctf_ctsid Reference to CommsTcpSession table entry observation at transmitting 

endpoint 
ctf_seqnum The sequence number in the TCP session for the starting byte of this segment 
ctf_chunksize The number of application-layer bytes in this segment having the same SoS 
ctf_senddate Time of first observation of these application-layer bytes being transmitted 
ctf_latency The SoS for this segment of  TCP data 
ctf_source ‘I’ or ‘P’: Representing whether the transmitter was the TCP initiator or peer 
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5. UDP 

Applications that do not require reliable delivery of application data typically use 
UDP (e.g., Voice over IP audio traffic, certain variable message format messages). 
The reporting of UDP packets is done with 2 tables: CommsUdpUnicast and 
CommsUdpMulticast. There is no processing or translation necessary between the 
data source (CommsIP) and these output tables. Creation of these tables is a trivial 
copy after sorting by multicast or unicast destination address. The rest of this report 
will focus solely on TCP processing. 

6. Identification and Partitioning of TCP Packets for Processing 

The TCP processing module gets all of its input from the CommsIP table. The 
entries in the CommsIP table are based on matching observations of an IP packet 
at a transmitting side and a receiving side. Within the scope of the processing 
framework, it was decided to record some TCP information in the CommsIP table 
because the CommsIP module already reads the packet data into memory and 
parses it. Without this step in the CommsIP module, TCP processing would have 
to re-read the raw data and parse packets again, resulting in significant replication 
of input/output (I/O) operations. The TCP layer information shown in Table 3 is 
stored in the CommsIP table for use in the TCP analysis. The TransportID or 
“txp_id” value is a 13-byte string comprised of the concatenation of the IP header 
fields identified in Table 4. This value is the primary identifier used to distinguish 
TCP sessions from each other. 

Table 3 Transport columns included in CommsIp tables 

Column 
Name Description 

txp_id 13-byte transport identifier string  
txp_hash Hash of “normalized” transport identifier 
txp_xport TCP/UDP port of packet transmitter 
txp_rport TCP/UDP port of packet receiver 
txp_istcp Boolean: True if packet is TCP, false 

otherwise 
tcp_tcp_seq The sequence number from the TCP 

header (undefined if not TCP) 
txp_tcp_ack The acknowledgement  number from the 

TCP header (undefined if not TCP) 
txp_datalen The total size of the TCP/UDP payload 
txp_tcp_flags The TCP flags field (undefined if not 

TCP) 
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Table 4 Transport identifier components 

IP Header 
Field Length Description 

1 byte IP Protocol identifier from IP header 
4 bytes Source IPv4 address of packet 
4 bytes Destination IPv4 address of packet 
2 bytes Source port of packet 
2 bytes Destination port of packet 

 
An important consideration in the processing of large amounts of TCP sessions is 
that the workload be distributed as evenly as possible over the set of processors 
used to run the reduction software. Since it is essential to have the timing, size, and 
sequence information for all packets in the session “for both directions”, we cannot 
simply divide the workload by txp_id values. Therefore, a hash (txp_hash) is 
computed over a “normalized” version of the TransportID such that packets going 
in both directions will have the same TransportID and hash (Fig. 1). The 
normalization process organizes the source and destination IPv4 addresses and 
ports in the TransportID based on a string comparison of the IPv4 addresses. 

 

Fig. 1 Generation of transport ID and transport hash 

Using just the normalized TransportID for distributing workloads would likely 
result in an uneven distribution of sessions across processors. This is due to the fact 
that IP addresses and ports used in most networks are organized into a small set of 
common subnets and application ports. Instead, a hash of the TransportID is used 
for distribution of workload. By using the hash of the normalized value, 
TransportIDs that have only a small difference (e.g., only last octet of source IP is 
different) will have hashes that are very dissimilar. Assigning processors each a 
range of txp_hash values to work on results in an even distribution of sessions and 
keeps both directions of the session together. This approach is a “best effort” at 
distributing processing load, although may not be optimal. While each processor 
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may get a roughly equal number of TCP sessions to process, the computational 
workload depends more on the number of packet records to process. TCP sessions 
with high packet counts upset this balance and are handled with another 
optimization, which is discussed later. 

7. TCP Processing Considerations 

7.1 Data Volume 

The amount of TCP data in a test can be quite large, and it is only expected to grow 
in future testing. An HPC compute node has finite memory and no disk space for 
swap. An out of memory error will crash the node or processes will be killed before 
the physical memory limit is reached. Writing out intermediate files, which are then 
read multiple times, can be a significant bottleneck, but random-access memory 
considerations are the primary factor in how data flows in the TCP processing 
module. A particular worker process is given a set of TCP sessions to analyze, and 
it must pick out all relevant packet records from the set of all IP packet records 
(CommsIP table). This set of TCP packets is written to a temporary file specific to 
the worker process and used for further processing. It is not safe to load all packet 
records from all of a worker’s TCP sessions at once. 

7.2 Incomplete Data 

Network data collection devices are subject to errors and congestion just as network 
devices are. It is understood that any packets of a TCP session may be present but 
not observed at a particular observation point. A packet dropped by the network 
may be indistinguishable from a packet dropped by the instrumentation. Therefore, 
it is not always possible to see the same TCP payload at each end point to compare 
transmitted bytes and received bytes. Our approach is designed to handle missing 
packets and give the most complete picture possible of the transport layer 
performance. 

7.3 Port Reuse 

A typical run of the TCP analysis code will process packets that were collected over 
a period of 8 or more hours. It is entirely possible that TCP endpoint pairs (IP and 
port sources and destinations) will be reused during that time period. Consideration 
must be given to separate these sessions in time.  
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7.4 Network Optimization 

Since tactical networks often suffer from large round-trip times and packet loss, 
special hardware might be deployed to minimize the impact these effects have on 
the performance of TCP. A Performance-Enhancing Proxy (PEP) may be used that 
effectively “intercepts” a TCP session and relays the application-layer traffic in a 
more optimal TCP configuration (e.g., larger window sizes). A matched PEP device 
close to the other endpoint also relays in a similar fashion. When operating with 
these devices, a single TCP session observed at 2 points on the network will have 
different initial sequence numbers for the session and TCP segment sizes may have 
changed en route. It is therefore important to consider “relative sequence numbers” 
when comparing observations at initiator and peer sides of the session. If the 3-way 
TCP handshake8 is not observed at one endpoint (instrumentation was not 
collecting, or dropped packets), it may be impossible to determine speed of service 
for the segments of the session. 

8. TCP Processing Algorithm 

The TCP reduction module is started within the context of the HPC reduction 
framework.9 The module depends on output from a completed run of the CommsIP5 
module. Given the set of files containing the CommsIP table, it selects a number of 
worker tasks to spawn based on the number of message passing interface ranks in 
the current HPC job, rounded up to the nearest power of 2. Rounding to a power of 
2 simplifies the selection of a txp_hash range to bit-mask and compare rather than 
a range or division operation.10 Each task is therefore assigned a subset of the 
txp_hash value space to work on (Fig. 2).  
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Fig. 2 TCP module distribution of work 

Each task goes through all CommsIP files and selects packet records that are 
assigned to it. Where N is the number of tasks, the n-th task selects all txp_hash 
values where the last  𝑙𝑙𝑙𝑙𝑙𝑙2(𝑁𝑁) bits of the txp_hash value are equal to n. It copies 
these packets into a new file (called “iter1file”) for subsequent processing. While 
this extra I/O takes time, it is critical to gather all required packets while not 
exceeding the memory limits of the computing node. This step results in a single 
file containing all packet records for all sessions that the task will process. 
Searching this file for packets from each TCP session it processes is much more 
efficient than searching the entire space of all CommsIP files. 

A first pass through the iter1file is made to get a list of all txp_hash values and the 
TransportID values for each of them. Ideally, there are 2 TransportIDs for each 
hash. If there is only one, then one direction of the TCP session was not observed. 
If there are more than 2, a hash collision has occurred and it is handled by matching 
the TransportIDs themselves. Further processing considers one txp_hash value or a 
single pair of related TransportIDs at a time. 

The iter1file is searched for all TCP SYN and SYN-ACK8 packets from the pair of 
TransportIDs. This step results in finding the set TCP establishment handshakes 
and their associated initial sequence numbers from the session initiator (Fig. 3). 
This serves to identify the start time of each TCP session that uses the same IP and 
port endpoints (hereafter called “subsessions”). The results of this step are recorded 
for each observation point, as sequence numbers may have changed along the path 
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by a PEP. The goal of this step is to discover the number of subsessions and the 
individual time frames of each subsession so that that all other packets may be 
grouped and processed appropriately.  

 

Fig. 3 Time ranges for subsessions when TCP ports are reused 

Another pass is made through the iter1file, finding all packets with the TransportID 
being processed. This time, each packet is added to a subsession tracker and is 
identified as either a transmitted or received packet at a particular observation point. 
Each packet added updates, counters, status flags, and a list of data segments 
(sequence number, data length, time) and ACKs (ACK number, time). A single 
packet record from the iter1file is usually added as both a transmitted packet and a 
received packet at their respective observation points. Each subsession object tries 
to identify the packet flow as being the initiator or peer of the TCP session. This is 
done based on the observation of SYN or SYN-ACK packets in the flow. 

The next step is to pair appropriate transmit and receive subsession objects at each 
observation point. In the ideal case, there is exactly one transmitted subsession and 
one received subsession and one of these has been identified as the initiator side 
and the other as the peer side. A CommsTcpSession record is created with the 
observation point and session statistics. The app_bytes fields (cts_appbytesitop and 
cts_appbytesptoi) are populated by going through the segment list and ignoring 
bytes that had previously been sent based on sequence numbers and lengths. If there 
are not exactly one transmitted and one received subsessions, then initial sequence 
numbers are used in an attempt to match appropriate observed flows. Since this 
considers only one observation point, the effects of a PEP and nonmatching 
sequence numbers are not an issue. 

The SoS calculation is made by recording the time of first transmission of a segment 
(sequence number and data length) and the time of first acknowledgment of that 
segment (Fig. 4). Previous approaches reconstructed the payload data into 750-byte 
“chunks” and compared the time sent versus received. A per-segment approach 
gives a more granular result and handles unobserved packets by either showing no 
SoS, or representing a slightly longer SoS value. For example, if 2 TCP segments 
are transmitted representing 100 bytes each, there may have been a single ACK 
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representing all 200 bytes, or 2 separate ACKs, representing each segment 
independently. These 2 scenarios are indistinguishable if the first independent ACK 
is not recorded. 

 

Fig. 4 Using transmitted data segments and transmitted ACKs to determine SoS of TCP 
payload data 

All trackers for tramsmitted subsessions, across all observation points, that were 
identified are gathered and paired for the SoS analysis. The first grouping is done 
temporally, looking for time overlap. Then initiator and peer subsessions are 
separated such that they can be paired together. If there are more than one set of 
initiators and peers in a subsession, initiators and peers from the same observation 
point are not paired with each other. This handles the case where packets from point 
“A” to point “C” are routed through point “B”. This case is recorded as 2 separate 
speeds of service records between points “A” and “B” and between points “B” and 
“C”. 

Considering a flow of traffic from a TCP initiator to a TCP peer, the transmitted 
data segments from the initiator’s observation point are compared against the 
transmitted ACKs from the peer. During the processing of the TCP Session data, 
the starting sequence number and length from each data segment are recorded. 
Retransmitted bytes are not considered for this purpose since flow analysis is only 
concerned with the earliest transmission of data. This is combined with a list of 
ACKs and their earliest times. For example, if a TCP endpoint sends 3 packets with 
the same ACK value, only the earliest observation is recorded. The resulting list of 
data segments and ACKs are used to construct a list of latencies for segments of 



 

12 

the application layer data stream. Each data segment and its latency is recorded as 
an entry in the CommsTcpFlows table. 

9. TCP Processing Optimizations 

Optimizations have been made to reduce memory requirements and I/O time in 
processing sessions. In initial prototypes of the code, information from all packet 
records for a session were loaded into memory and then sorted by both transmit and 
receive time order into separate lists. This led to long sorting times and memory 
exhaustion when processing large sessions. Now, a preindexed sorting mechanism 
allows packet records to be loaded in both transmitted and received time order. 
Retransmitted data segments and duplicate acknowledgements can then be ignored 
since only the earliest observation is used. 

The TCP sessions assigned to a worker are processed sequentially. During this time, 
each packet record from the session must be read from the iter1file. As the number 
of TCP sessions assigned to a worker increases, so does the number of passes 
through the iter1file. A bottleneck appeared in TCP sessions with extremely large 
packet counts, resulting in very long read times for ALL sessions handled by that 
worker. To alleviate this, smaller TCP sessions (ones with fewer packets) are 
copied out to another file. While this requires another round of I/O, it results in 
many passes through a smaller file plus a small number of passes through the 
original large file. In some cases, this optimization resulted in a 100× speedup for 
workers.  

10. Conclusions 

The TCP processing module developed for HPC has been used during several test 
events over the course of one and a half years. It has evolved as requirements 
change and optimizations are discovered. Large-scale tests can process on the order 
of one million TCP sessions in one to 3 h, depending mostly on the distribution of 
packets among the sessions. The types of analysis that are done are unique; they 
utilize observations from both endpoints of the session and compute speed of 
service based on the time that data is transmitted from the sender to the time an 
acknowledgement is sent by the receiver. While this module was designed and built 
for C4 analysis of test events, it could easily be adapted for enterprise or wide-area 
network analysis using appropriate data collection tools. 
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List of Symbols, Abbreviations, and Acronyms 

C4  command, control, communications, and computers 

DAG  Data Authentication Group 

HPC  high-performance computing 

I/O  input/output 

IP   Internet Protocol 

PEP  Performance-Enhancing Proxy 

SoS  Speed of Service 

SYN   synchronize 

SYN-ACK synchronize and acknowledge 

TCP  Transmission Control Protocol 

UDP  User Datagram Protocol 
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